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Immiscible displacements in porous media with both capillary and viscous effects can 
be characterized by two dimensionless numbers, the capillary number C, which is the 
ratio of viscous forces to capillary forces, and the ratio M of the two viscosities. For 
certain values of these numbers, either viscous or capillary forces dominate and 
displacement takes one of the basic forms: (a) viscous fingering, ( b )  capillary 
fingering or (c) stable displacement. We present a study in the simple case of injection 
of a non-wetting fluid into a two-dimensional porous medium made of interconnected 
capillaries. The first part of this paper presents the results of network simulators 
(100 x 100 and 25 x 25 pores) based on the physical rules of the displacement a t  the 
pore scale. The second part describes a series of experiments performed in transparent 
etched networks. Both the computer simulations and the experiments cover a range 
of several decades in C and M .  They clearly show the existence of the three basic 
domains (capillary fingering, viscous fingering and stable displacement) within which 
the patterns remain unchanged. The domains of validity of the three different basic 
mechanisms are mapped onto the plane with axes C and M ,  and this mapping 
represents the ‘phase-diagram ’ for drainage. In  the final section we present three 
statistical models (percolation, diffusion-limited aggregation (DLA) and anti-DLA) 
which can be used for describing the three ‘basic’ domains of the phase-diagram. 

1. Introduction 
Immiscible displacement in porous media is still the subject of active research, 

both theoretical and experimental. Although the physical mechanisms a t  the pore 
scale seem to be understood and are much easier to model than in the case of miscible 
fluids, the macroscopic description of the displacement remains a problem when 
fingering occurs on a large scale. 

The long-term purpose of our study is to determine the saturation, the finger 
length and the size of the trapped clusters as functions of the geometry of the 
medium and the flow conditions. Our approach is based on the notion of ‘phase- 
diagram’ proposed in a short note by Lenormand (1985). Fluid displacement can be 
characterized by two dimensionless numbers ; the capillary number C, which is the 
ratio of viscous forces to capillary forces, and the ratio M of the two viscosities. For 
certain values of these numbers, either viscous or capillary forces dominate and 
displacement takes one of the basic forms: (a) viscous fingering, ( b )  capillary 
fingering or (c) stable displacement. The domains of validity of the different basic 
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mechanisms can be mapped onto the plane with axes C and M .  This mapping has 
been called the ‘ phase-diagram ’ for immiscible displacements. 

The main purpose of this paper is the verification of this notion of phase-diagram 
in the very simple case of a two-dimensional porous medium made of interconnected 
capillaries. The first part of this paper presents the results of a network simulator 
based on the physical rules of the displacement a t  the pore scale. The second part 
describes a series of experiments in transparent etched networks. Both the computer 
simulations and the experiments clearly show the existence of the three domains 
within which the patterns remain unchanged, and the corresponding values of M and 
C are in good agreement. I n  the final section we present three statistical models 
(percolation, diffusion-limited aggregation (DLA) and anti-DLA) which describe the 
‘basic’ domains of the phase-diagram. 

2. The physical network simulator 
The objective of our network simulator is to reproduce the behaviour of a large 

network of pores and throats (assumed to represent the porous sample) from the 
combination of physical laws governing the mechanisms a t  the pore level. The study 
will be illustrated in the particular case of a two-dimensional square network ; this 
both simplifies the computer simulations and allows a direct comparison of the 
simulations with experiments performed in micromodels. 

2.1.  Principle of the network simdator 
The idea of modelling a porous medium by a network of randomly sized pores joined 
by randomly sized throats has been used by several authors (for instance Koplik & 
Lasseter 1985; Dias & Payatakes 1986a and references therein). If the fluids are 
Newtonian and if the capillary effects are neglected this approach leads to a linear 
system of equations in which the unknowns are the fluid pressures a t  the nodes. At 
each time step, this system has to be solved and the interface between the fluids 
updated according to the computed flow rates in the throats (Chen & Wilkinson 
1985). 

Difficulties arise when capillary effects are taken into account. In  this paper, we 
limit our study to the case of injection of the non-wetting fluid (known as drainage 
in petroleum literature). In  this case, the non-wetting fluid cannot enter a throat as 
long as the pressure is smaller than a threshold value P,. given by Laplace’s 
law : 

2y cos e 
P, = -, 

r 

where r is the radius of the throat, r the interfacial tension and 6’ the contact angle. 
From a mathematical point of view, the threshold due to the capillary pressure leads 
to a nonlinear problem : the system of equations used to solve the pressures at each 
node requires knowledge of which throat will next be invaded by the meniscus, and 
this knowledge itself requires the value of the pressure at each node. 

In  order to avoid difficulties due to this nonlinearity, different approaches have 
been used by the above-mentioned authors. All the methods consist of replacing the 
nonlinear problem by a sequence of linear problems. Koplik & Lasseter used a ‘trial’ 
technique : all possible combinations of elementary displacements are investigated. 
For each case, the problem becomes linear. Instead of the threshold at  the entrance 
of a cylindrical throat, Dias & Payatakes use the more realistic approximation of a 
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fluid - - 
FIGURE 1. Schematic illustration of the linear displacement of the fluid 1 by a fluid 2 

in a two-dimensional porous medium. 

conical pore. However, the capillary pressure changes during the invasion of the 
meniscus, and 10-20 steps are necessary to resolve motion in a single throat. 

Both methods are time consuming and limited to small networks (10 x 10 for the 
first one, 15x30 for the second). Our approach, in this study, is to approximate 
directly the solution of the nonlinear problem instead of solving a large number of 
linear problems. This allows us to study networks of dimension 100 x 100 on a 
VAX11/785. For the simulation we make the following simplifications which we do 
not expect to affect the dominant physical mechanisms. 

2.2. Qeometry of the network 

The porous medium is represented by means of two sets of elements: pores and 
throats, situated respectively at  the sites and bonds of a regular two-dimensional 
square lattice. The pores represent the porosity and are spherical. The pressure drops 
occur only in the throats, which are cylindrial with uniform length. Each element 
(pore or throat) is thus described by a unique parameter, its radius. These radii are 
randomly chosen according to  a given distribution law (we used here a uniform 
distribution in an interval [(i - g ) r o ,  (1 + g ) r 0 ]  centred on the average radius ro) .  A 
network is thus fully characterized by five parameters: the mean radius and the 
distribution width for (i) the pores and (ii) the throats, and the distance a between 
two nodes. I n  this way, porosity and permeability can be selected independently. 

2.3. Flow conditions 
A first fluid (fluid 1 of viscosity ,al) in place in the network is displaced by a second 
one (fluid 2 of viscosity ,az), injected through a face of the network (figure 1)  with no- 
flow conditions on the lateral boundaries. The pressure is assumed constant at the 
outlet. Inertial and gravity effects are neglected. 

I n  each pore, we assume a sharp interface between the two fluids (no diffusion or 
mixing), even when the interfacial tension is very low. This assumption is in good 
agreement with the observations in micromodels. Consequently, a pore has to be 
completely filled with the invading fluid before this fluid can reach an adjacent pore. 
For each pore i ,  a coefficient a$ gives the percentage of fluid 2 contained in the pore. 

We assume that interfacial tension plays a role only when the meniscus is inside 
the throat : this means that the two adjacent pores are completely filled by different 
fluids (‘interfacial nodes’). Let us examine first the case where there is no capillary 
effect between pores. 
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A Poiseuille flow is assumed in each throat. If i and j are two adjacent pores, the 
flow rate qij between them is given by 

where rii is the radius of the throat, pi and p j  the pressures in pores i and j .  The 
'effective ' viscosity pij takes into account the local saturations by means of the 
average of the two viscosities, weighted with the fraction 01 of each fluid in the 
pores : 

p i j  = 0.5 p z ( a i + ~ j ) + 0 . 5  p1(2 -a i -a i ) .  (3) 

This approach is equivalent to  introducing a local relative permeability for each 
fluid, which is a linear function of the saturation. 

Now, let us examine the effect of capillarity when the meniscus is in the throat, just 
between i and j .  The flow rate is given by 

where pZi = 2y cos 6/rii is the pressure difference between nodes i and j necessary for 
the invading fluid (in node i )  to enter nodej.  In this equation, the + denotes the 
positive part;  this means that qi, .= 0 as long as (pi-pr) < Pij, otherwise the 
expression of qij is the one of a diphasic Poiseuille flow in a tube with a pressure jump 
at the interface. 

The flow between two interfacial nodes no longer depends linearly on the pressure 
difference: the flow is zero up to a threshold value. The solution of this nonlinear 
problem is approached through a relaxation technique. At each time step, we sweep 
the network several times (generally four times), updating the pressure at each node 
from the pressure of its neighbours through the flow-conservation equation (the flow 
is taken to be zero between two interfacial nodes as long as the pressure threshold is 
not reached). We stop when a satisfactory stability is obtained. At this stage, we 
know the total flow rate and the contents of each pore. The time step is then 
calculated as the time required to completely fill one pore. This means that the 
interface is moved in all the pores until it reaches one of the throats. 

To illustrate the principle of this nonlinear approach, let us consider the injection 
through two parallel capillaries, a case that can be studied analytically. The radii of 
the capillaries are rl and r ,  (say r1 > r 2 )  ; Pc, and Pc, are the two capillary thresholds 
(Pc. < Pc2);  and K ,  and K ,  are the hydraulic conductances (K = xr4/8ap) .  The 
invading fluid (non-wetting) is injected a t  a constant total flow rate q and the fluids 
have the same viscosities. The pressure P is uniform a t  the entrance of the tubes and 
is taken as reference a t  the exit (P  = 0). 

At time zero, the two menisci are located a t  the entrances of the two capillary 
tubes (figure 2a) .  The problem is to determine into which tube the invading fluid will 
flow and calculate the pressure P a t  the entrance and the flow rate in each tube as 
a function of the total flow rate q .  

Figure 2 ( b )  shows an example with the numerical values Pc, = 1.68; Pc, = 2 ;  
K ,  = 2;  K ,  = 1.  The solid line represents the nonlinear relation between q and P 

q = K1(P-Pc , ) '+K2(P-Pcz)~  

This equation contains all the physics of the displacement : 

no displacement. 
As long as P is smaller than Pel, each of the two terms of q ( 5 )  is nil and there is 
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FIGURE 2. Injection of a non-wetting fluid into two parallel capillaries : (a) situation at time 
zero, ( b )  nonlinear relationship between the flow rate q and the pressure P .  

When P is between P,, and Pea, only the first term is not nil, and the fluid flows into 
the first tube (the largest) with a conductance K ,  (slope of the segment). 

If P > P,,, the fluid flows in both tubes, with a total conductance K , + K 2  (slope 
of the segment). 

In our problem we impose the flow rate, and the unknown pressure is calculated 
directly by means of this nonlinear relationship between q and P .  We can see that 
below q* (corresponding to P,,), the injected fluid only enters tube 1, while above it 
enters both tubes. 

In  the simulator the nonlinear equation is solved by using a relaxation process. 
The dots on figure 2 ( b )  are the numerical results for the pressures corresponding to 
different flow rates obtained using this technique. 

The method of Koplik & Lasseter (1985) in this simple case, would consist in first 
making the hypothesis that the fluid flows only into tube 1, computing the 
corresponding pressure, checking if P < P,, and, if not, recomputing the pressure 
assuming that the fluid flows into both tubes. Dias & Payatakes ( 1 9 8 6 ~ )  would 
replace the cylindrical tubes by conical throats and compute step by step the menisci 
displacements. 

2.4. Results of the simulations 
We are dealing with three kind of forces : viscous forces in fluid 1, viscous forces in 
fluid 2, and capillary forces. Consequently, an experiment or a simulation is fully 
characterized by two dimensionless numbers, which are the ratios of two different 
forces. We arbitrarily choose the viscosity ratio M = ,uz/,ul, and the capillary number 
C, which is the ratio between viscous forces which act at  the pore scale in the injected 
fluid and capillary forces: 

( 6 )  QP2 C =  cy cos 8’ 

where C is the cross-sectional area of the sample. For both simulations and 
experiments, 2 is the product of the width of the network by a thickness equal to the 
distance between two sites (1 mm). 

With this assumption, each simulated displacement can be displayed as a point in 
a plane with axes representing the vicosity ratio and the capillary number. Owing 
to the large variation of these parameters, the two axes are presented in decimal 
logarithmic scales. 
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X I 
FIGURE 3. Locations of the various simulations in the plane M-C on a log-log scale: 

x represents the 100 x 100 simulations and the four lines 1 to 4 the 25 x 25 ones. 

We used two different networks : a large one (100 x loo), computer-time consuming 
but with a size close to  the experimental micromodels, and a small one (25 x 25) ,  
which allows a detailed exploration of the plane M-C. 

100 x 100 network 

The parameters describing the geometry of the pores are chosen to represent the 
experimental values of the micromodel (see $4.1). The mean radius of the pores is 
equal to the mean radius of the throats (micromodels are made of interconnected 
capillaries) ro = 0.23 mm, with a dispersion 5 = 0.5 for the throats and 0.2 for the 
pores. We have checked that monophasic permeability is in good agreement with the 
experimental one. The geometrical network is the same for all the simulations. 

The results consist of two series of simulations at different C and constant M and 
a series at constant C. The corresponding points are represented by crosses, located 
on the M-C diagram shown in figure 3. The simulations are run until the injected 
fluid (2) reaches the opposite face, when ‘breakthrough ’ is said to  have occurred. In  
figure 4 (a<) we show in black the pores occupied by the invading fluid a t  the moment 
of breakthrough. 

The first series of simulations (figure 4 a )  shows the evolution of the pattern 
with the capillary number when a less-viscous fluid is injected (log M = -4.7; M = 
2 x lop5). At high flow rate, the pattern remains the same for the two highest value of 
C. This pattern is characteristic of viscous fingering. At very low C, we find a different 
pattern caused by capillary fingering (logC = -9.7 and - 10.7). 

I n  the second series (figure 4 b ) ,  a more-viscous fluid is injected; the viscosity ratio 
is M = 79 (logM = 1.9). We observe a continuous transition between two different 
well-defined patterns; the first one a t  very low flow rate (logC = -5.9 and -6.9) 
when capillary effects are dominant and the second one a t  high flow rate (log 
C = - 0.9 and - 1.9), corresponding to a stable displacement (displacement stabilized 
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FIGURE 4. 100 x 100 simulations a t  various viscosity ratio and capillary numbers: (a )  logM = -4.7, 
from viscous fingering to capillary fingering: ( b )  logM = 1.9, from stable displacement to capillary 
fingering: (c) logC = 0, from viscous fingering to stable displacement. 

by viscous effects). At low flow rate, the pattern due to capillary effects is identical 
with the one obtained in the unstable case (figure 4a ,  log C = - 10.7).  

The third series a t  constant capillary number (log C = 0 )  shows the transition 
between the two patterns which characterize viscous f i nger ing  and stable d i sp lacemen t  
(figure 4c) .  The two extreme patterns are also identical with the corresponding ones 
from the two previous simulations (figure 4a,  b at  the highest C). 

We may quantify the evolution of the patterns by means of the pore volume 
fraction S of the injected fluid a t  breakthrough (equivalent to the partial saturation 
in fluid 2) and the results are shown in figure 5. The dots correspond to the same 
geometrical distribution of pores and throats (same seed for the random generator). 
For logM = 1.9, the saturation S increases monotonically from 0.37 a t  low C 
(capillary fingering) to 0.95 for the stable displacement. In  the other series 
a t  constant viscosity ratio (logM = -4.7) the saturation presents a maximum 
(8 = 0.40) and a minimum (AS = 0.15), between two plateaux (S  = 0.37, capillary 
fingering and S = 0.22 viscous fingering). The third curve a t  logC = 0 increases 
monotonically from S = 0.22 (viscous fingering) to 0.95 (stable displacement). 

The results obtained with a different seed for the random generator are plotted in 
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figure 5 ( b )  (crosses). The fluctuations are small, a result expected when using a large 
network. 

An interesting question is the evolution of the patterns and of the final saturations 
over a large range of viscosity ratios M .  For this purpose we must use a smaller 
network in order to limit the CPU time. 

25 x 25 network 
The mean radius of the pores and throats is r,, = 0.56 mm ; the dispersion cr = 0.7 

for the throats and 0.2 for the pores. All the simulations were performed with the 
same network. We first explored the four lines shown in figure 3. All the saturation 
curves (figure 6) have the same shape : two plateaux for the extreme values for M or 
C and a transition zone. The results are similar to the 100 x 100 simulations but, 
owing to the difference of size of the networks and pores size distribution, the height 
and position of the plateaux are somewhat different. Subsequent exploration of the 
entire plane leads to three domains, corresponding to the plateaux of the previous 
curves, within which the saturation S is constant: S = 0.28, 0.54 or 0.80. The 
boundaries of these domains are displayed in figure 7. 

Inside a constant-saturation domain, the simulated patterns remain identical (for 
a given network). Outside the domains, the patterns evolves continuously toward a 
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FIGURE 7 .  Plot of the constant-saturation domains for the 25 x 25 simulations. 
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new pattern characteristic of another domain, in the same way as the two series 
obtained with the 100 x 100 network. 

The mapping of these three domains in the plane M-C, for a given geometry and 
size of the net,work constitutes the ‘ phase-diagram ’ for this given network. 

3. The phase-diagram 
How can we physically justify these domains and the shapes of their boundaries 1 

3.1. Physical interpretation of the domains 

Each of these three domains corresponds to a different ‘basic ’ mechanism where only 
one kind of force is acting, the two others being negligible a t  the scale of the network 
studied : 

(i) Stable displacement: the principal force is due to the viscosity of the injected 
fluid; capillary effects and pressure drop in the displaced fluid are negligible. The 
pattern presents a flat front with some irregularities a t  the scale of a few pores (figure 
4b, logC = -0.9). The size of the clusters trapped behind the front is also only a few 
pores. 

(ii) Viscous Jingering: the principal force is due to the viscosity of the displaced 
fluid; capillary effects and pressure drop in the displacing fluid are negligible. The 
tree-like fingers present no loops, they spread across the whole network and they 
grow towards the exit (figure 4a,  logC = -5.7). 

(iii) Capillary Jingering : a t  low capillary number the viscous forces are negligible in 
both fluids and the principal force is due to  capillarity. The fingers also spread across 
the network but the pattern is different from the previous case and the final 
saturation is larger (figure 4a,  loge = - 10.7 and figure 4b, logC = -6.9). At all 
scales, the fingers grow in all directions, even backward (toward the entrance). They 
form loops which trap the displaced fluid and the size of the trapped clusters ranges 
from the pore size to macroscopic, of the order of the network size. 

3.2. Boundaries of the domains 

Comparison between different simulations shows that changing the pore size 
distribution or the size of the network leads to a translation of the boundaries of the 
domains but that the general shape remains unchanged. We can qualitatively justify 
this result, which is the main property of the phase-diagram. 

Based on the value of the viscosity ratio M ,  one can distinguish three zones (figure 
8) : zone I, at  very low M ,  where viscous forces in the injected fluid (2) are negligible 
in comparison with viscous forces in the displaced fluid (1); zone 11, the transition 
zone, where the viscous pressure drops in both fluids play a significant role ; and zone 
111, at  very large M ,  where the viscous pressure drop in fluid 1 is negligible. The 
viscous pressure drop 6P across the network in each fluid can be calculated by using 
the relative permeability k, (generalized Darcy’s law) : 

where ,Z is the cross-sectional area of the sample and k the monophasic permeability. 
The calculation of k, is beyond the scope of this paper ; however, its value remains 
constant inside each of the domains. 

Now, varying the capillary number of changes the relative importance of capillary 
effects compared with viscous forces : 
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FIGURE 8. Schematic representation of the three zones where the different viscous forces are 
acting and the boundaries of the basic domains (lines A-F). 

At high C : the capillary forces are negligible. I n  this case, zone I corresponds to  the 
domain where viscous forces in fluid 1 are dominant (viscous fingering) and zone I11 
to the domain of stable displacement. The boundaries of these two domains, a t  high 
C, are the limits of zones I and 111, i.e. the lines A and B parallel to the C-axis (figure 
8). 

At low C :  viscous forces, which act on the length L of the network, are very small 
in comparison with capillary forces, i.e 

I n  zone 111, viscous forces are dominant in fluid 2 and ,u = ,uz. Consequently, this 
leads to the equation of the boundary of the capillary domain: 

case 
p2qL = constant x -, 

r (9) 

which leads to C = constant x k k,/rL, a condition represented by a line parallel to the 
M-axis (line D, figure 8). 

In zone I, viscous forces are dominant in fluid 1 with ,u = ,ul in (8). This leads 
to an equation of the form C = constant x M x k kr / r ,  which gives a line with a 
slope = 1 in log-log scale (line E, figure 8). 

In  zone 11, we can only assume continuity between lines E and D. 
At intermediate C :  the effect of capillary forces becomes negligible when 

ycoso  pqL 
4- 

r kk ,E 

The calculation is analogous to the previous case (with a different constant) and gives 
two lines which are parallel to the boundaries of the capillary domain (lines C and F, 
figure 8). 

Note that the slope = 1 (in zone I) is due to  the definition of the capillary number 
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by reference to fluid 2. In  fact the significant pressure drop is in the more-viscous 
fluid and we should use a capillary number based on the larger viscosity in order to 
represent the real mechanisms. However, we must keep the same definition of C to 
draw the diagram. 

So far we have presented the results based on computer simulations. We now check 
the validity of this approach by experiments performed in two-dimensional artificial 
porous media. 

4. Experimental set-up 
Experiments in micromodels are a complement to computer simulations a t  two 

levels : first, they provide information on the physical mechanisms that take place at  
the pore level and, secondly, they test the validity of the model by comparing the 
results on a large scale. For the detailed study of the mechanisms at the pore level 
during drainage, and a description of the micromodel, we refer the reader to 
Lenormand, Zarcone & Sarr (1983). The purpose of the following section is to 
compare the large-scale patterns obtained with the simulations. 

4. I .  Micromodels 
We have developed a moulding technique using a transparent resin and a 
photographically etched mould. The cross-section of each duct is rectangular with a 
constant depth (e = 1 mm) and a width d which varies a t  random from pore to pore. 
For this study we used a large network (135 x 150 mm) containing about 42 000 
ducts with seven classes of width (from 0.1 to 0.6 mm), distributed with a log-normal 
law. The distance between two sites of the network is 1 mm and the permeability k 
is approximately m2 (1000 Darcy). 

For the whole set of experiments we used four micromodels, all made from the 
same mould. 

4.2. Fluids 
Various fluids have been used in order to vary the capillary number and the viscosity 
ratio over a large range: 

Aliphatic oils, used as wetting fluids, coloured-with a red organic dye (except when 
mercury is used as a non-wetting fluid). The viscosity ranges from 0.32 CP (or 
0.32 x lop3 Pa s) to 1000 cP. 

Glucose aqueous solution, with viscosity from 1 CP (pure water) to  1000 cY, used 
as non-wetting fluid with oil. Owing to  the nature of the resin of the micromodel, this 
pair of fluids is only suitable for experiments of short duration (less than one hour). 
For long experiments, the contact angle varies and the wettability is not ~7ell defined. 

Air (viscosity 180 pP), used as non-wetting fluid with oil or as wetting fluid with 
mercury. 

Mercury, always a non-wetting fluid (viscosity 1.65 cP). This fluid presents no 
evolution of the contact angle with time. It can therefore be used for very long 
experiments. Furthermore, its high surface tension and low viscosity lead to very low 
capillary numbers. 

The non-wetting fluid is injected through the micromodel (drainage) using 
constant-flow-rate syringe pumps (volumetric flow rate q )  a t  room temperature. 
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Run 

A-0 1 
A-0 2 
A-0 3 
A-0 4 

Hg-0 1 
Hg-0 2 
Hg-0 3 
Hg-0 4 
Hg-0 5 

Hg-0 6 
Hg-0 7 
Hg-0 8 
Hg-0 9 
Hg-0 10 
Hg-0 11 
Hg-0 12 
Hg-0 13 
Hg-0 14 
Hg-0 15 

Hg-H 1 
Hg-H 2 
Hg-H 3 
Hg-H 4 

Hg-A 1 
Hg-A 2 
Hg-A 3 
Hg-A 4 

w-0 1 
w-0 2 
w-0 3 
w-0 4 

w-0 5 
W-0 6 
w-0 7 
w-0 8 

Y2 
C P  

0.018 
0.018 
0.018 
0.018 

1.55 
1.55 
1.55 
1.55 
1.55 

1.55 
1.55 
1.55 
1.55 
1.55 

1.55 
1.55 
1.55 
1.55 
1.55 

1.55 
1.55 
1.55 
1.55 

1.55 

1.55 
1.55 

570 
570 
570 
570 

4700 
4700 
4700 
4700 

1.55. 

PI  
C P  

1000 
1000 
1000 
1000 

1000 
1000 
1000 
1000 
1000 

100 
100 
100 
100 
100 

5.6 
5.6 
5.6 
5.6 
5.6 

0.32 
0.32 
0.32 
0.32 

0.018 
0.018 
0.018 
0.018 

5.6 
5.6 
5.6 
5.6 

5.6 
5.6 
5.6 
5.6 

Y 
dyn/cm 

20 
20 
20 
20 

370 
370 
370 
370 
370 

410 
410 
410 
410 
410 

450 
450 
450 
450 
450 

470 
470 
470 
470 

480 
480 
480 
480 
14.5 
14.5 
14.5 
14.5 

14.5 
14.5 
14.5 
14.5 

P 
cm3/s R, 

8.3 x lo-' 6 x 
2.8 x 10-2 

1.3 x 10-3 

2.8 x 10-2 

5.6 x 10-3 

1.4 x 10-5 

2.8 x 10-2 

5.6 x 10-3  

1.4 x 10-5 

9.4 x 10-4 
8.3 x 10-5 
1.4 x 10-5 

3 . 8 ~  lo-' 9 
2 . 8 ~  lo-' 0.7 
8.3 x 10-4 
8.3 x 10-5 

2 x 10-4 
i x 10-5 

2 x 10-4 
4 x 10-5 

1 x 10-7 

2 x 10-3 
4 x 10-4 

1 x 10-6 

i x 10-3 
i x 10-4 
2 x 10-5 

2 x 10-2 

2 x 10-3 

1.1 x 8 x lo-' 

8.3 x 6 x 
8.3 x 6 x lo-' 

8.3 x 6 x 
8.3 x 6x  lo-' 

2.8 x lo-' 4 x 
5.6 x 8 x 

1.6 0.8 
3 . 2 ~  lo-' 0.2 
4.7 x 2 x 

3.2 x lo-' 
3.2 x 10-4 z x 10-4 

3.2 x 10-3 4 x 10-3 
6.0 x 10-4 8 x 10-4 
2.2 x 10-5 3 x 10-5 

3.3 x 10-3 4 x 10-3 
1.1 x 10-3 z x  10-3 
1.8 x 10-4 2 x 10-4 

4 x lo-' 

5.8 x lo-' 8 x lo-' 

R2 

4 x 
1 x 
6 x 

2 
0.4 

5 x lo-* 

5 x 10-5 

5 x 10-3 
9 x 10-4 

2 
0.4 

5 x lo-2 
5 x 10-3 
9 x 10-4 

2 
0.4 

5 x lo-' 
5 x 10-3 
9 x 10-4 

20 
2 

5 x 1 0 - 2  

100 
20 

3 
2 x 1 0 - 2  

5 x 10-3 

4 x 10-3 
4~ 10-5 

3 x 10-7 

9 x 10-5 

3 x 10-7 

8 x lo-' 

5 x 
2 x 

TABLE 1. Physical properties of the fluids and flow conditions 

log M 

-4.7 
-4.7 
-4.7 
-4.7 

-2.8 
-2.8 
-2.8 
-2.8 
- 2.8 

-1.8 
-1.8 
- 1.8 
-1.8 
-1.8 

-0.6 
-0.6 
-0.6 
-0.6 
-0.6 
0.7 
0.7 
0.7 
0.7 

1.9 
1.9 
1.9 
1.9 

2 
2 
2 
2 

2.9 
2.9 
2.9 
2.9 

log c 

-6.3 
- 6.7 
-8.1 
-9.1 

-6.1 
-6.8 
- 7.6 
- 8.6 
-9.4 

-6.1 
-6.8 
-7.6 
-8.6 
-9.4 

-6.1 
-6.8 
-7.6 
- 8.7 
-9.4 

- 5.0 
-6.2 
-7.7 
-8.7 

- 4.4 
-5.1 
- 5.9 
-8.1 

-1.0 
-3.0 
-3.8 
-5.2 

-0.9 
-2.1 
-2.6 
-3.4 

4.3. Characterization of the experiments 
I n  the same way as for the network simulator, the two main parameters are the 
viscosity ratio and the capillary number, with the same definitions. The capillary 
pressure is calculated in a channel with a rectangular cross-section ( d x e )  by the 
equation 

with less than 6% error (Lenormand et al. 1983). 
However, we cannot completely avoid gravitational and inertial effects : 
gravitational forces ; the micromodel is held horizontal in order to avoid gravity 

effects. Some problems might occur with mercury when the horizontality is not 
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perfect (the pressure due to height of 1 mm of mercury is 130 Pa, compared to the 
capillary pressure of 1000 Pa in a l’mm diameter channel). 

inertial forces ; the Reynolds number R (ratio between inertial and viscous forces) 
is calculated within a channel by the classical definition 

In this equation, the calculation of the velocity V depends upon the flow pattern : for 
a piston-like displacement, the fluids are moving in all channels across the section of 
the micromodel (assumed to be equivalent to a bundle of N parallel channels). For 
a finger-like displacement, we assume flow through only one channel. The two values 
of Reynolds number (fluids 1 and 2 )  are always very small (creeping flow, R < l ) ,  
except for mercury because of its high density. 

All the parameters describing the various experiments are collected in table 1 .  
The measurement of the final saturation a t  breakthrough is not accurate or 

sufficiently reproducible to be a useful parameter, the main problems being the 
differences in behaviour of two pairs of fluids (due to the contact angle and trapping 
mechanisms a t  the pore level) and small differences in the etching of the micromodels 
(see below the discussion section). 

5.  Experimental results 
We present only the most significant experiments, which are indicated on figure 9,  

and referenced by the initials of the fluids, the first one corresponding to the non- 
wetting fluid. The non-wetting fluid is always injected a t  the left-hand side of the 
micromodel, but, depending on the nature of the fluids, it may appear as white or 
black in the pictures. 

Air/oil (A-0) : log M = -4.7 (figure 10a). 
Mercury/hexane (Hg-H) : logM = 0.7 (figure l ob ) .  
Mercury/air (Hg-A) : logM = 1.9 (figure 1Oc). 
Water-glucose/oil (W-0) : log M = 2 (figure 10d) and logM = 2.9 (figure 10e). 
Mercury/oil (Hg-0) : logM = -2.8, - 1.8 and -0.6 (figure 11). 
The whole set of experimental results agrees with the results of the computer 

simulations : we can identify the three domains corresponding to stable displacement, 
viscous fingering and capillary fingering. Inside each domain the general shapes of 
the experimental patterns are similar to the simulations. Between these domains we 
also observe the transition zones within which the patterns vary continuously from 
one structure to another. 

5.1. Basic mechanisms 
Unlike the simulations we have no parameter S to decide when the plateau is reached 
and, consequently, our selection of the experiments that correspond to basic 
mechanisms is based solely on the aspect of the patterns within each series of 
experiments. 

Stable displacement : The frontier between the fluids is flat and the amount of fluid 
trapped behind the front is very small. Experiment W-0 5 (figure 10e) corresponds 
to this case (see injection conditions in table 1 ) .  

Capillary fingering : This kind of displacement is illustrated by experiments Hg-A 
4 (figure lOc, mercury displacing air with C z or Hg-0 8, 9,  10, 12 (figure 
1 1 ) .  
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FIGURE 9. Locations of the various series of experiments in the plane M-C.  The letters represent 
the various fluids: A :  air, H g :  mercury, 0:  oil, H:  hexane and W :  glucose-water solution. The 
dashed lines are the limits of the basic domains, from the 100 x 100 simulations. 

Viscous Jingering: Figure 12 shows four stages of the injection of air (white) 
through very viscous oil (black). The conditions of injection are approximately the 
same as for experiment A-0 1 (table 1). Initially, several small fingers grow a t  the 
entrance of the micromodel and, progressively, a few of them grow faster than their 
neighbours and inhibit the development of the shorter fingers. The aspect of the 
fingers is different from the capillary case : no loops can be seen and all the fingers are 
oriented toward the exit; this leads to a characteristic tree-like shape. 

5.2. Cross-over : stable displacement-capillary jingering 
Owing to technical limitations, (pressure, time, etc.) we cannot use the same pair of 
fluids for studying the whole transition zone: we used water/oil for high C and 
mercury with air or hexane for low C. The behaviour of the different series is quite 
coherent : 

Stable displacement when log C > - 1 (W-0 1 and 5). 
Capillary fingering when log C < - 7  (Hg-H 3 and 4 and Hg-A 4). However, the 

patterns differ between air and hexane; this may be due to a small difference of 
etching in the micromodels. Another possibility is linked to the low viscosity of air : 
when trapped by mercury, air can easily escape by flowing along the roughness of the 
walls (the 'leak' mechanism, Lenormand & Zarcone 1 9 8 4 ~ ) .  

Transition zone. Decreasing the flow rate (or C) increases progressively the exten- 
sion of fingering from pore size (stable displacement) to the size of the network. The 
amount of trapped phase also increases with the length of the fingers. Furthermore, 
the size of the trapped blobs is of the order of the finger size. 

5.3, Cross over : capillary Jingering-viscous Jingering 
Figure 11 displays the results a t  breakthrough for three viscosity ratios and five 
capillary,numbers with the fluids mercury oil. All the experiments of this series are 
performed with the same micromodel. We observe a constant pattern corresponding 
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log M =  -2.8 -1 .8  - 0.6 _ -  - 

FIGURE 11. Mercury (black) displacing three various types of oils at different C and M 
All the experiments are performed in the same micromodel. 
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FIGURE 12. Different stages of t h e  displacement of very viscous oil by air. 

to capillary fingering (pictures 4, 5, 8-10 and 12-15). The analogy between the 
patterns proves that capillary fingering is deterministic. The left-hand column (logM 
= -2.8) shows the effect of viscous forces when the flow rate increases: fingers 
become progressively thinner and the number of backward branches decreases 
(pictures 3 to 1) .  However picture 1 remains different from tree-like viscous fingers. 

In  figure 10a, the choice of viscous oil (1000 cP) and air leads to a very low 
viscosity ratio, a necessary condition for a strong viscous instability. The four 
pictures show the transition between viscous fingering (A-0 1 and 2) towards 
capillary fingering. 

5.4. Comparison with simulations 
First, we want to underline the experimental difficulties which may affect the 
results : 

Damaged micromodels: the fluids used for cleaning can cause large changes of 
wettability or permeability. For instance, the micromodel used in the experiments 
Hg-0 or A-0 seems morc permeable in the centre zone than along the edges, a 
default that is more sensitive to capillary effects than viscous effects (A-0 4, for 
instance). 

Wettability problems, with oil and water a t  very low flow rate. 
Gravity, with mercury. 

Somc problems are due to the physical properties of the fluids and cannot be 
overcome without changing the experimental technique. The most important is the 
effect of inertial forces present in mercury. For instance, the Reynolds number in 
mercury is very high for Hg-A 1 and 2 (table 1) and these two experiments should 
be presented more as a cross-over towards inertial effects rather than viscous 
effects. However, near the percolation frontier (Hg--A 4), this effect is negligible 

The second problem is the displacement of the trapped blobs a t  very high capillary 
number. This effect is not an artifact due to the micromodel, and does indeed take 
place during enhanced oil recovery in real rock samples. However our simulator 
cannot account for this mechanism, unlike that developed by Dias & Payatakes 
(1986 b). 

Despite these technical problems, the comparison between experimental and 
numerical result leads to a good agreement for: 

The existence of the three basic mechanisms and the similarity of the experimental 
and simulated patterns in each domain : capillary fingering, viscous fingering or 
stable displacement. 

The extension of cross-over zones : a large gap (around 4 decades) between stable 
displacement and cayillary fingering and a smaller gap (3  decades) between capillary 
fingering and viscous fingering. 

(R = 5 x 10-3). 
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Good agreement for the location of the boundaries of the phase-diagram. To allow 
comparison, we have plotted as dashed lines (figure 9 )  the boundaries obtained from 
the three series of simulations, assuming the same shape as for the 2 5 x 2 5  
simulations (figure 7) .  From the previous determination of the experimental basic 
domains, we can conclude that we have an agreement within the order of the decade. 
For example, the simulated boundary for the capillary domain crosses the matrix of 
experiments Hg-0 (figure 11) through the pictures 4 , 8 , 1 2 ,  which fits with the visual 
determination. 

Consequently, the relatively good agreement between the experiments and the 
simulations validates the microscopic rules used in the network simulator. Note 
that experiments in the reverse case of imbibition (wetting fluid displacing non- 
wetting fluid) lead to different results, indicating that the same microscopic laws 
based on the analogy with flow through smooth capillary tubes cannot be utilized for 
imbibition (flow along the roughness of the walls, snap-off mechanisms, etc., 
Lenormand & Zarcone 1984a). 

The second conclusion is that both the experiments in micromodels and the 
network simulator justify the notion of a phase-diagram. 

We shall now show how these patterns can be described by a stochastic approach. 

6. Statistical modelling of the basic mechanisms 
In  this section, our purpose is to associate a well-defined statistical model with 

each of the three different patterns of the basic mechanisms (stable displacement, 
viscous fingering and capillary fingering). 

A continuum approach based on the macroscopic Darcy’s law cannot describe the 
ramified and chaotic aspect of both capillary and viscous fingers. Consequently, 
alternative models based on a microscopic description of the medium and stochastic 
displacement of the interface between the fluids have been developed. Such 
stochastic models lack the physical description of the network simulators, but are 
still capable of useful predictions of the geometry and transport properties of a given 
network, and of how these properties depend on the network size. Furthermore, 
statistical simulations on a computer are generally faster than solving flow equations 
in network simulators. 

Our purpose is not to describe these theories in detail, but rather to recall the main 
feature already obtained in previous studies and give the more recent references. 

6.1. Capillary Jingering and invasion percolation 
This approach is related to capillary mechansims that take place a t  the microscopic 
(pore) scale and the randomness due to the different sizes of pores. 

Capillary forces prevent the non-wetting fluid from spontaneously entering a 
porous medium. It can only enter a throat (radius r * )  when the pressure exceeds the 
pressure in the wetting fluid by a value P, equal to the ‘capillary pressure’. From a 
statistical point of view a duct with r > r* is an ‘active’ or ‘conductive’ bond and 
a duct with r < r* an inactive bond. 

At a given pressure P,, the injected fluid invades all the channels connected to  the 
injection face; this mechanism is called ‘invasion percolation ’ (see for instance 
Wilkinson 1985 and references therein). During the displacement, the wetting phase 
is trapped in the network when the invading non-wetting fluid breaks the continuous 
path toward the exit. 

A computer simulation of invasion percolation is based on the following rules. A 
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FIGURE 13. Results of statistical simulations on a large network: (a )  invasion percolation, 
( b )  diffusion-limited aggregation with a line seed, ( c )  anti-DLA. 

random number (a probability between 0 and 1) is given to each bond and this 
number is kept fixed during the whole of the simulation (it represents the radius of 
the duct). At each step, the interface is moved to invade the bond adjacent to the 
interface, where the probability number is the largest (without invasion of the 
trapped clusters). A simulation of this mechanism on two-dimensional network (size 
75 x 75) is shown in figure 13 (a )  (after Lenormand & Bories 1980). The heavy line 
shows the continuous path between the entrance and the exit. This pattern is similar 
to the result of the network simulator (figure 4a ,  logC = - 10.7) and the experiments 
in the capillary domain (figure IOc, Hg-A 4). 

Invasion percolation is a ‘local model’, i.e. a t  each step, the injected fluid invades 
one pore (or site) according to the size of the throats along the frontier. A t  a given 
stage, menisci in the pores do not ‘see’ the exit because we are assuming a zero 
pressure drop in the fluids. The mechanism is different for viscous displacements. 

6.2. Viscous displacement and dielectric breakdown model 

Viscous displacements, either stable or unstable, are governed by the pressure field 
between the entrance and the exit. Consequently, even in the case of stable 
displacement, a local model based on some rules a t  the interface cannot be realistic. 
A model, called ‘the Dielectric Breakdown Model ’ (DBM) (Niemeyer, Pietronero & 
Weismann 1984) has been adapted to solve viscous flow in porous media (see 
Sherwood 1987 for a review). This model uses a continuum approach to calculate the 
pressure field together with a discrete displacement of the interface which accounts 
(in some sense) for the granular structure of the porous medium. 

Let us now examine the two extreme cases when M + 0 and M + co for which the 
DBM can be replaced by two simpler models : diffusion-limited aggregation (DLA) 
and anti-DLA. 

M + 0 :  Diffusion-limited aggregation (DLA) 
In this case, the pressure drop in the injected fluid is negligible and therefore the 

pressure field is only calculated in the displaced fluid. The patterns obtained in the 
viscous-fingering domain (figure 4a, logC = -5.7) are similar to those obtained by 
the DLA model (Paterson 1984; Lenormand & Zarcone 19843; MBl0y, Feder & 
Jmsang 1985). DLA can be represented by the following process: a seed particle or 
a line is placed on a lattice and another particle, launched from far away, moves a t  
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random and sticks when it reaches the seed or the line (Witten & Sander 1983). 
Another particle is launched and so forth. This diffusive process produces very 
ramified clusters, as shown in figure 13b (after Houi & Lenormand 1984). in the case 
of sticking on a line seed. 

M + co ; anti-DLA 
From computer simulations a t  high capillary number, we observe that trapping of 

very small clusters still occurs when M +  00 (figure 4c, logM = 2) ,  and that the 
displacement cannot be described by a flat interface. Paterson (1984) was the first 
author to suggest the relationship between a stable displacement in a porous medium 
and an anti-DLA process. More recently Meakin & Deutch (1986) have presented 
detailed properties of a similar model called diffusion-limited annihilation. 

The anti-DLA model consists in releasing particles (equivalent to fluid 2) near a 
compact aggregate (the pore network filled by fluid 1 in our case). The particle moves 
a t  random until it reaches an occupied site. I n  this case, the particle and the site are 
removed and a new particle is released. Figure 13 ( c )  shows the result of an anti-DLA 
simulation on a 100 x 100 network, where we added a condition of non-annihilation 
on a disconnected cluster to take into account the trapping of the displaced fluid. The 
main result of Meakin & Deutch is that the asymptotic variance lof the front 
thickness scales with the width L of the network according to [In (L)]r. 

6.3. The phase-diagram and statistical models 
Although the analogy between viscous fingering and DLA or DBM has never been 
definitively assessed (Kadanoff 1985 ; Chan, Hughes & Patterson 1986), the similarity 
between the patterns is striking. So, we shall assume that each of the three main 
regimes of displacement of one fluid by another can be described by the following 
statistical models : 

Viscous fingering simulated by diffusion limited aggregation (DLA) (or M + 0 limit 
for DBM). 

Stable displacement simulated by anti-DLA (or M + 00 limit for DBM). 
Capillary fingering simulated by invasion percolation. 
The next step will be the direct calculation of each of the boundaries of the diagram 

(lines A-F, figure 8) by using the statistical theories described above. Some results 
on the scaling laws in an ‘infinite’ porous medium by means of DLA and invasion 
percolation have been published (Lenormand 1986). However, the relationship 
between the pore size distribution and the randomness of the statistical models needs 
further studies (Chen & Wilkinson 1985; Nittmann & Stanley 1986). 

At this point, can we answer the fundamental question about the relationship 
between these statistical models and the classical macroscopic approach ? The 
classical approach is based on the Representative Elementary Volume (REV) 
concept (Bachmat & Bear 1986): the properties of the solid medium (porosity, 
permeability) and of the fluids (saturations, relative permeabilities, pressure, etc.) are 
defined within a volume (REV) that is small compared with the sample size. This 
means, for instance, that the blob size must be much smaller than the sample size. 
We have shown that a large number of blobs of fluid 1 remain trapped after 
displacement. From simulations and experiments, we can assume that the maximum 
size of the blobs is of the same order as the finger length during the displacement. 
Consequently, the classical approach is valid inside the anti-DLA domain (maximum 
blob size of the order of (log L);) and depending on the sample size, inside a large 
stripe around this domain. Obviously, the classical approach is not valid in the DLA 
and percolation domains where the finger length is of the ordcr of the sample size. 
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7. Conclusions 
The first point is the good agreement between the computer simulations and the 

experiments in micromodels when both capillary and viscous forces are acting. This 
study shows that the two approaches are complementary and necessary. The 
micromodels are used to generate the microscopic rules of the simulator and to check 
the validity of the results a t  large scale. On the other hand, the reproducibility of the 
‘numerical experiments ’ allows the study of parameters (such as the final saturation) 
that are difficult to obtain in physical experiments. In  addition, numerical 
experiments can be performed when physical experiments are impossible because of 
tcchiiical limitations (pressure, time), which is the ease for the series a t  logC = 0. 

The secoiid point concerns the notion of the phase-diagram. Both simulations and 
experiments show the existence of three main regimes : stable displacement, viscous 
fingering and capillary fingering, which can be mapped onto the viscosity 
ratio-capillary number plane. 

Each of these main rcgimes can be described by a statistical model: anti-DLA, 
DLA and invasion percolation. Although the analogies have not yet been 
demonstrated, the similarities between the patterns are striking. These statistical 
models and their cross-overs in transition zones will lead to general calculations of 
the boundaries of the phase-diagram. 
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colleagues a t  Schlumberger Doll Research (Ridgefield) and a t  Dowel1 Schlumberger 
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and J. Sherwood for helpful criticisms of the manuscript. This research has been 
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